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A B S T R A C T  

We investigate the existence and statistical properties of absolutely con- 
tinuous invariant measures for multidimensional expanding maps with 
singularities. The key point is the establishment of a spectral gap in 
the spectrum of the transfer operator. Our assumptions appear quite 
naturally for maps with singularities. We allow maps that are discontin- 
uous on some extremely wild sets, the shape of the discontinuities being 
completely ignored with our approach. 

1. I n t r o d u c t i o n  

We consider piecewise invertible expanding maps T on some compact subset f~ of 

]R N. The transformation T is locally uniformly expanding. However, due to the 

presence of persistent singularities, it may not satisfy some nice combinatorial 

behavior (like Markov partition, finite range structure, etc.). Therefore abstract 

dynamical coding like symbolic dynamics will not be considered. 

The main focus of this paper is to prove the existence of a T-invariant prob- 

ability measure absolutely continuous with respect to the Lebesgue measure m 

(in short ACIM). One way to find such a measure (and its properties) is to study 

the spectrum of the Perron-Frobenius (PF) or transfer operator, defined by the 

dynamic. 
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This approach has been successfully carried out in the one-dimensional case 

[LY]. It is now proven that  any piecewise monotonic map of the interval which 

is eventually expanding* - -provided that  T has some smoothness- -  possesses an 

ACIM and the dynamic decomposes very simply into "chaotic" elements. 

Despite several at tempts,  the same question is still open in the multidimen- 

sional case. The unexpected difficulties are essentially due to the following facts: 

(1) One has to find a functional space rich enough to contain the density (which 

may be discontinuous) but not too wide (to give PF a nice spectral decomposi- 

tion). 

(2) In more than one dimension, the geometry of the dynamical parti t ion 

becomes a crucial ingredient. 

Point (1) has been extensively solved with functions of bounded variation** 

and some adaptat ion of them [BG]. This method, although highly powerful in 

dimension one, led to difficult problems in our case, essentially coming from point 

(2). 

The analysis of PF requires, in the non-Markovian case, a combination of an 

extension and a trace theorem. This is one of the main problem in the multi- 

dimensional case.t The main difficulty comes from the fact that  the variation 

does not control the supremum of a function. This point is the source of most of 

the problems; the need to control the integral of the function (actually, its trace 

on the surface) along a codimension one smooth surface appears to be unavoid- 

able. Here is the point where assumptions on the shape of the parti t ion arise 

(in particular, codimension one, piecewise g(2) smoothness of the boundary and 

absence of cusps). We have to mention [Za], where the author avoids this prob- 

lem, essentially using the fact that  from outside, cusps can be simply forgotten 

(see Fig. 1). But the difficulty remains if "the outside" does not exist, like in the 

example by [BGP], where the persistence of the problem is clearly identified/[~ 

We propose here for point (1) to work with a functional space introduced in 

* A map T is called eventually expanding when the inverse of the Jacobian matrix 
of some iterate T ~ of the map has a norm strictly bounded by one. For maps 
of the interval, this property reduces to the fact that for some n > 0, D T  n is 
bounded from below by some constant strictly larger than one. 

** In more than one dimension, the notion of bounded variation does not rely on 
any ordered structure. Bounded variation functions are functions for which the 
derivative, in the sense of distributions, is a measure whose total variation is 
finite. 

]~ Also in dimension one if the Darboux property does not hold (a map satisfies the 
Darboux property whenever the image of an interval is again an interval). 

t t  The title of the paper, "Inadequacy of the bounded variation technique..." does 
not leave any doubt ! 
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this context by G. Keller [Ke] for one-dimensional maps. This space indeed is still 

relevant in the multidimensional case, at least for absolutely continuous measures. 

In [B1] M. Blank worked with this space and gave similar results with an ad hoc 

hypothesis (unfortunately, this hypothesis implies the same kind of restrictions 

that  one has when working with bounded variation functions) on the dynamical 

partition. 

Using a different approach, we are able to state a theorem with highly relaxed 

hypotheses on the dynamical partition. This allows us to deal with maps that  are 

discontinuous on some very irregular sets, even on fractal sets (see Example 2.1). 

Moreover, general conditions are given for a map with piecewise C (1) domains to 

enjoy the required properties. 

Spectral properties shown for the PF operator ensure immediately the well 

known decomposition into a finite number of ergodic components (of positive 

Lebesgue measure), decomposable into mixing components for some iterates of 

the map. 

As a byproduct,  we obtain that on these components, Hblder observables are 

mixed exponentially fast by the map. 

A great property of the function space involved in this paper gives, without 

much effort, a constructive upper bound on the number of positive Lebesgue 

measure ergodic components (see Theorem 5.2). 

We also investigate the question of computing an upper bound for the rate of 

decay of the correlation function, for Hblder observables. A method is presented 

where such a bound is computed; the strategy, already involved in [L2] for ex- 

panding maps of the interval, in [LSV1] for one dimensional equilibrium states 

and in ILl] for multidimensional symplectic maps, is to define a projective metric 

space, on which PF is a contraction, the contracting factor being computable. 

Figure 1. An example of a domain containing a cusp in C. 

SOME NOTATIONS. Given a Borel subset S of •g,  we denote respectively its 

closure, its interior and its boundary by clos(S), int(S) and OS = clos(S)\ int(S). 
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For a function f �9 L ~ Esups f and Einfs f will represent the essential 

supremum and infimum of f on B with respect to the Lebesgue measure. 

We denote by Be(x) the open ball of radius e and center x, in the Euclidean 

metric d. 

Moreover, given a real number a > 0, we write B~(S) = {x �9 R N Id(x, S) < a}. 

In addition, we write indifferently re(f)  = f f ( x )dx  = f f d m  for all f �9  . 

" IN  ~- rN/2 / (N/2) !  denotes the N-volume of the N-dimensional unit ball of 
R N . 

We now introduce the maps under consideration in this paper. 

2. P i e c e w i s e  e x p a n d i n g  m a p s  

Let l) be a compact subset of N N, with clos(int(ft)) = ~, and T: ~ --+ ~. Let 

us give our definition of a piecewise expanding map. We assume that  there 

exists an at most countable family of disjoint open sets Ui C ft and Vi such that  

clos(Ui) C Vi, and maps T~: Vi ~ R g satisfying for some 0 < ~ _< 1 and some 

small enough s0 > 0: 

(PE1) for all i, TIu ' = Tilu ~ and Ti(Vi) D B~o(TUi); 
(PE2) for all i, T i e  C(1)(Vi), Ti injective and Ti -1 E C(1)(TiVi). Moreover, 

the determinant is uniformly Hhlder: for all i, c < So, z E TiVi and 

x , y  G BE(z) N TiVi we have 

(1) I det D~T[ -1 - det DyT(I[  <_ c[ det D z T (  1 le~; 

(BE3) r e ( f  t \  [Ji Ui) = 0; 

(PE4) there exists s = s(T) < 1 such that for all u, v �9 TV~ such that  d(u, v) < 
~0 we have d(T~-lu, T[-lv) <_ sd(u, v); 

(FEb) let G(s, s0) := sup~ G(x,~,eo) where 

m(T(1B~(OTUi)  N B(1-~)eo (x)) 
: =  ' 

i 

and assume that  77 defined by 

: =  8 + 2 s u p  

is such that sup~_<eo r/(5) < 1. 

Remark 2.1: 

1. We emphasize the fact that  12 and the Ui's do not have to be connected. 
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2. When the family Ui is finite and (PE2) is true, (PE4) is equivalent to the 

following property: 

there exists s < 1 such that sup sup IIDxTi-lll < s, 
i xET~Vi 

where I1" I[ stands for the Euclidean norm. 

3. (PEh) may look very hard to obtain. Basically, it implies that typical tra- 

jectories will not feel the discontinuities, so that the dynamic is essentially 

a smooth one. In Example 2.1 we will compute this quantity for some 

maps discontinuous on a fractal set. Note that this condition implies that 

the boundaries are at least of co(box)dimension a. In Lemma 2.1, we will 

give explicit conditions to get (PEh) in the case of piecewise C (1) bound- 

aries. Figure 2 gives an example of some domains Ui with piecewise smooth 

boundaries (G(x, a) is the sum of the three areas between the dotted lines, 

divided by the area of the disk B(x)). 

i 

Figure 2. Typical domains Ui with neighborhood of boundaries. 

With these assumptions, it is easy to see that the Perron-Frobenius operator is 

well defined on L~,  and reads like 

P h =  E(gh)  o  Tu,, 
i 

where the weight g is given by g = 1/I det DT I. We recall that  P satisfies for all 

h e L 1 , f e L ~ ,  

~ f o T h d m = ~ f P h d m .  

Moreover, h E L 1 is an invariant density of an ACIM if and only if h is a positive 

eigenvector of P with eigenvalue 1. 
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The following lemma concerns the case of a finite partition Z = {Ui} with 

piecewise smooth boundaries. If this is so, the computation of G(c) can be made 

without much trouble and the hypothesis (PEh) becomes extremely clear. 

LEMMA 2.1: Let T be a map which satisfies (PE1)-(PE4) with a ~nite family 
of open sets Ui. Suppose further that the boundary of the Ui are included in 
piecewise C 1 codimension one embedded compact submanifolds, and let Y be 

the maximal number of these smooth components that can meet in one point, 

i.e. 

Y(T) := ~e~ Nsup ~ .  # {smooth pieces intersecting OUi containing x}.  

Setting 
4s(T)  y(T)'IN_ 1 

, 0 (T)  := s ( T ) "  + 1 - s(T~ ~N ' 

we have the following: 

If  ~7o(T) < 1 then (PEh) holds. 

Proob Let x E ~N and consider an element Ui of the partition. We need to 

compute the Lebesgue measure of the set 

(2) T~-I(BE(OTUi)) n B(I_~)~o (x). 

By (BE4), we know that T(-I(BE(OTUi)) c Bse(OUi). Moreover, OUi C Uj Fij 
where Fij are compact C O) embedded submanifolds, hence T~-I(B~(OTUi)) C 
Uj B~E (Fij). We can now estimate (2) by looking at each smooth component F# 

of the boundary separately. The aim is then to compute the following quantity: 

(3) m(Bv(r )  n Ba(x)),  

for 5 = (1 - s)c0, F = Fij and u = sc < 5, where co will be fixed later. If x does 

not belong to the u-neighborhood of F then nothing has to be done. Otherwise, 

let us consider the preferred local coordinate map (I) of the embedded submanifold 

F. We can suppose (I): B~(x) ~ R g for some 5 independent of x (remember that 

F is compact). We recall that (I)(F) is contained in a hyperplane H of R N. To 

simplify, let us choose �9 such that Dx(I) = I. 

The following estimates hold for y E Bh(x) (1" I represents the Euclidean norm 
in ]I~N ): 

I'~(v) - '~(~)1 _< ID~'~(y - ~)l + o(~) < ~(1 + o(~)), 
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hence (o(1) stands for a function which vanishes with 5) 

(I)(Ba(x)) C Ua(l+o(1)) (g2(x)) .  

Moreover, given z E F and y C B.(z) A Ba(x) we have 

[O(y) - ~(z) l  _< I D z ~ ( y  - z)l + o ( . )  _< (1 + 0(5)). + o(.),  

which implies 

q~(B.(F)) C B.(l+o(a))+o(~)(H) C B~(I+o(1))(H). 

Since the coordinate map is a C0) perturbation of a translation, it changes 

volumes by a factor 1 +o(1). This means that (3) is bounded by 1 +o(1) times the 

measure of Ba(l+o0))(~(x)) N B.O+o(1))(H). It is obviously maximal when the 

hyperplane H crosses the center of the ball. In this case, the quantity can be eas- 

ily estimated by 2.(1+o(1))  times the ( N - 1 )  volume of the (N-1)-dimensional  

ball of radius 5(1 + o(1)). Hence 

(4) (3) _< 2L'TN_15N-l(1 + O(1)). 

This inequality is sufficient for each smooth piece. 

Since there are only finitely many Fij, it is possible to get all the o(1) uniform 

in x and Fij. Moreover, if 5 is chosen small enough, then any ball of radius 5 

intersects at most Y smooth pieces of the boundary. Consequently, if r is small 

enough 
G(r Eo) <_ Y2 7N-1 sr 

7N (1 -- s)eo (1 + o(1)). 

Finally, (PE5) will hold provided ~0(T) < 1 and r is small enough. | 

The hypothesis (PEh) can be stated in a very nice way, shown to us by J. Buzzi, 
if one is not interested in computing the exact values of the constants entering 

into the inequalities. We first define the multiplicity entropy Hmult(Z, T) of the 

partition Z = {Ui} (denote by Z (n) = Z V T - 1 Z V  ... V T - n + I z  the dynamical 

partition): 

~Imult(Z,T ) :=  lim 1 logsup#  {Z E Z('~)]x E elos(Z)} 
n ---~ o o  n x 

Next, define the dilatation coefficient 5(T) of the map T by 

5(T) := lim l log sup [[DxT-~[[, 
n~oo  rt x6.T,~(gt) 

where we take the norm of the derivative along each smooth branches of T -n. 

Then we have the following criterion for the hypothesis (PE5): 
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LEMMA 2.2: Let T be a piecewise invertible C (1) map with a partition into 

smooth components Z such that (PE1)-(PE3) hold for some 0 < a < 1. Suppose 

that the boundary of the partition is included in a finite number of C (1) compact 

embedded submanifolds. 

If Hmuu (Z, T) + 5(T) < 0 then some iterate of the map satisfies (PE1)-(PEh). 

Proof: Clearly properties (PE1)-(PE3) are still true for the iterates of the map 

T. Moreover, since 5(T) < 0, also (PE4) will be true for n big enough and Co 

sufficiently small. 

Let us consider now (PEh). Let S be the number of smooth pieces containing 

the boundary of the partition Z. Since for each i the map Ti is smooth in some 

neighborhood of Us, a simple induction shows that the number of smooth pieces 

containing the boundary of an element Z of the partition Z (n) is bounded by Sn. 

It follows that  the constant Y ( T  '~) in Theorem 2.1 is bounded by 

X 

Moreover, the contraction s(T ~) goes to zero like exp(nh(T)). This implies that 

for n big enough r/o(T n) < 1. Lemma 2.1 applies and concludes the proof. | 

Remark 2.2: We want to stress that there is no need to control the angles 

between smooth elements of the partition, contrary to other methods. 

In the case of an affine mod Z N map of the unit cube, Y ( T  ~) grows only 

polynomially with n (see [Bu]), ensuring that HmuU(Z,T) -- 0, hence (PEh) is 

true for some iterate. 

This result has been also used in [Bu2] to ensure the existence of ACIM for 

piecewise (real-)analytic expanding maps of the plane. 

Remark 2.3: The fact that the pieces of the boundaries are embedded submani- 

folds is not essential to get (PEh), but it is unclear how to give a general statement 

which allows singular points (like edge of cones, etc.). 

Let us give now an example of a fractal boundary which could satisfy the 

hypotheses. 

Example 2.1: Let us consider a map T on f~ = [0, 1] 2 which is discontinuous on 

a yon Koch's fractal set F. The construction of F is done as follows: start from 

the diagonal D of the unit square. Then, cut the diagonal into three segments 

of equal length, and replace the one in the middle by two segments of the same 
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length, as shown in Fig. 3. Repeat this procedure with each small segment and 

so on. Call F the set so obtained. 

Figure 3. Third step of the construction of F. 

We have the following claim, which shows that for such a map T it is possible 

that (PE5) holds, provided that s is small enough. 

CLAIM: The contribution of the boundary F to G(r r O n property (PE5)) is 
such that for all a <_ codim(F) = 2 - log 4/log 3 we have 

2~+1(1 + 2/~) s2_ ~ m(Bse(P) KI B(l_s)eo(X)) e~ < 
sup sup 
e<_eo x m ( B ( l _ s ) e o ( X ) )  E a - ( l - s )  2 - e  

Proof: Let ~ = log 4/log 3 (it is the fractal dimension of F). Let 5 > 0 be small 

enough, v < 5 and a _< 2 - /3.  We want to compute the quantity (3) (see Lemma 

2.1). Let 
= [l~ v-1 ] 

n [ ~ j  + 1. 

Since our accuracy is v, it suffices to consider the n-step approximation of the 

fracta] F. At  the order n, each segment is of length (1/3) n, and there is at most 

4'~(25) ~ segments in a ball of size 6. It follows .that 

(3) < 2~[(1/3)n2v + 7ru214n5 ~ _< 2~(2 + 7c)v~-~5 ~. 

So the measure of the intersection divided by the measure of the ball of radius 5 

is bounded by 
2~(1 + 2/7r)5~-2v 2-z. 

Hence the contribution to G(~, ~0) from the boundary F is bounded by 

(5) 2 [ s \ 2 - / 3 /  C \ 2 - f l  

 F0) ' 
which finishes the proof. | 
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3. Quasi-Hhlder space 

We now introduce the functional space on which we will study the spectrum of 

the operator PF. 
Let 0 < c~ < 1 and e0 > 0 be real numbers, and f E LI(]~N,]~). For a Borel 

subset S of RN, we define the oscillation of f on S by 

osc(f,  S) : Esup f -  Eisnf f. 
S 

By definition of the oscillation, it is easy to prove 

PROPOSITION 3.1: For each f E L~(i~N,]~), as a function of x 

osc ( f , B: ( x ) ) is lower semi-continuous, hence measurable. 

E ]~N, 

Remark 3.1: Although functions in L 1 are only defined almost everywhere, the 

oscillation is a real positive function defined everywhere on R g.  In addition, 

supposc (/,  Be (')) C Be (supp f) .  

By Proposition 3.1, we can define 

[f]~ = sup : - ~ f  osc(f,  Be(x))dx. 
O<e_<eo JRN 

Remark 3.2: Although it is not explicitly written, it is important to remember 

that ]f[~ may depend on :0. However, the sets V~ do not depend on :0- 

We define now 

It is clear that any compactly supported c~-Hhlder continuous function belongs 
to V~, but this space is bigger, since functions in V~ may have discontinuities.* 

PROPOSITION 3.2: Let f ,  f i ,g  E L~(RN,R) ,  g be positiwe, 0 < a,b,c and S be 

a Borel subset o f R  y . The oscillation has the following properties: 

(i) o s e ( E  ~ f~, B~(.)) _< ~ ,  osc(f~, Ba(-)), 

(ii) o s c ( f l s , B a ( ' ) )  ~ osc(f,  S n  Ba( ' ) ) l s ( ' )  

+2[EsuPs.(.)nS Ifl]lBo(S)nBo(sc)('), 
(iii) osc(fg,  S) _< osc(f,  S) EsuPs g + osc(g, S) Einfs Ill, 
(iv) i f  a + b <_ c, then for all x E ~N we have 

E s u p f  < 1 fB  If(y) +osc( f ,  Bc(y))] dy. 
Bo(x) -- m(Bb(x))  b(~) 

* We recall that we cannot avoid discontinuities, since we do not ask any Markovian 
property on T. 
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Proof (i) is trivial. 

(ii) Let x E R N. If x is such that d(x, S) < a and d(x, S ~) < a then 

osc( f Is ,  Ua(x)) < 2 sup Ifl. 
B,~(x)AS 

Otherwise, the ball Ba(x) and S are disjoint, hence the oscillation of f I s  is null, 

or the ball is included in S and then f l s  = f on the ball. Whence the result. 

(iii) If the sign of f does not change on S, we can suppose that f _> 0, 

osc(fg, S) ~_ Esup f E s u p g -  Eisnf f Eisnfg 
S S 

< Esup g(e sup f - Eisnf f )  + Eisnf f (Esu p g - Eisnfg ). 
S S S 

If the sign of f does change then 

Esup fg  - Eisnf fg  = Esup fg  + Esup - f g  
S S S 

< Esup g(Esup f + E s u p - f ) .  
S S S 

(iv) Let  x �9 N N be fixed. For all y e Bb(X) we have Ba(x) C Be(y), hence 

ahnost everywhere, 

E s u p f  _< Esup f  _< f ( y ) +  osc(f,B~(y)), 
Ba(x) Be(y) 

which yields the result by integration over y C Bb(x). | 

Using standard functional analysis, the following can be shown (see [Ke] for 
more properties). 

P R O P O S I T I O N  3.3: If  we set the norm [1. I[~ = [[ ' [[LI,~ q - [ '  Is then V~ becomes a 

Banach space. In addition, since f~ is compact, the intersection of the unit ball 

of V~ with the set of functions supported on f~ is compact in L~  (NN ). 

PROPOSITION 3.4: V~ is continuously injected in L~;  

max(l, r (6) v f ~ v ~ ,  IlfllL~ ~ ~N~o N 

Moreover, Vc~ is an algebra with the usual sum and product of essentially bounded 

functions 

(7) Vf, g E V~, Ilfgl[~ < 2max(l'c~)llfll~llg[[~. 
--  ,.),NcN 
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Proo[: Proposition 3.2(iv) gives for all a > 0 and b = e0 - a 

max( l ,  s~) 

which shows inequality (6) letting a -+ 0. 

By Proposition 3.2(iii) and H51der inequality we get that  

Ilfgli. _< ifi.iigllL  + II/llL lgl. + ilfllL, IIgiiL , 

which gives by inequality (6) 

Ilfgl]~ <- 2max(1, e~) B 
7N E'N 

LEMMA 3.1: For every positive h ~ Va, h ~ O, there exists a ball on which the 
intimum of h is strictly positive. The radius e of the ball can be taken as 

( , . ,  ) e = m i n  e 0 , \  �9 

Proof." Let 0 < h C V~, h r 0 and e as in the Lemma. We suppose that  h is not 

constant (otherwise the lemma is proven). 

We claim that  the infimum of h is strictly positive on some ball of radius e. 

Otherwise, the infimum of h on every ball would be null, and this would imply 

(the first inequality being strict, for h is not constant) 

/ h(x)dx < f Esuphdx= /osc(h,B~(x))dx <_ ,h,~e ~, 
J B~ (x) 

which is contradictory by our choice of e. i 

4. h L a s o t a - u  t y p e  inequa l i ty  

In this section we will establish the key inequality, which says that  not only does 

P act continuously on V~, but also that  P is a quasi-compact operator,  hence 

spectral results follow. 

Notice that  we consider functions defined on all of ]I( N , despite the fact that  a 

density is always supported on ft. Whereas we could have conducted the same 

computat ions on ~, we would have found very bad estimates with respect to the 

dimension or the shape of ~.* 

* It is just because on RN, the Lebesgue measure of a ball depends only on its radius, 
while the volume of Be (x) ;'1 ~t may vary a lot when x is near the boundary of ~. 
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LEMMA 4.1: Let us assume (PE1)-(PE5). Provided co is small enough, there 

exists ~ < 1 and D < cc such that, for f C V~, P f E V~ with the following: 

IPfl~ <- ~lfl~ + D ~ N  If I- 

Proof'. Let f C V~ and e < e0. For almost every x C R N, Properties (PE3) and 

(PE1) together with Proposition 3.2 yield 

osc(Pf, Be(x)) < E osc( ( f9)o  T( '  ITu,,Be(x)) 
i 

_< ~ osc((/g) o T( 1, rU, n Be(x)) Z~u, (x) 
i 

+ 2 [  Esup IfgIoT(I]IBdOTUd(X) 
TU~nB~ (~) 

<__ ~ o~c(fg, u~ n T-'<(x)) I~< (x) 
i 

+ 2 [  Esup IfgI]IB~(OTuJ(X). 
U, nT(1B~ (x) 

We will show now that the right hand side of that inequality has an integral 

bounded by 771f1~r ~ + D[[f[lL~e ~ for some constant r~ < 1 and D arbitrarily 
large. 

Let us begin with the first term of the right hand side. For x E TUi, setting 
yi = T{-lx gives by (PE4) 

R } I ) ( x )  : =  osc(fg,  Ui N T ( 1 B e ( x )  ) < osc(fg, Ui N B,,(y,) ), 

which is by Proposition 3.2(iii), for almost all x E TUi, less than or equal to 

Einf If] R}I)(x) <osc(f,B,~(yi)) Esup g + ose(g, Ui N B,E(yi)) "~(y,) 
UiMBs~(y~) 

<(1 + cs%'~)osc(f, B~e(yi))g(yi) + Ifl(ydg(ydcs~e% 

Here we have used inequality (1). Hence an estimation of the first term can be 

(8) E RI')ITU, <- (1 +cs~:~)P(osc(f,B~e(.))) +cs'e~Plfl, 
i 

which gives after integration 

fRN ER}I'1TUI <-- (l+csa~a) /ose( f ,  Bse(')) +CSa~a f~N-If]- 
i 
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By definition of Ifl~ we end up with 

s 
N i N 

For the second term the computations are more delicate, and we need some 

deeper knowledge about the structure of the partition {Ui}. This is where the 

geometrical hypotheses on the domains are used: 

R}2)(x) := [ Esup Ifgl]IB~(OTU,)(X). tU~OT-1B~(x) 

If X • B~(TUi) then Rl2)(x) = 0. Otherwise, by definition of g, (BE4) and 

inequality (1) we obtain (still Yi is T[-lx) 

RI2)(x) _< [ Esup Ifl]ldetDxT~-ll(1 + CS~ea)IB~(OTU,))(x). 

An integration over IR g followed by a change of variable gives 

1 ~ Rl2)(x)dx < fR IB~(OTuJ(TiYi) Esup [f[dyi. (10) (1 + csC~e a) N - N 8..~(y,) 

Proposition 3.2(iv) (with a = sg, b = (1 - s)r and c = ~o) tells us that  the 

supremum of If] is bounded by its oscillation plus its average. This yields (10) 

less than or equal to 

s aYm(B(l_s)eo(y))" IB~(OTud(Tiy) f.(,_.,r (y> [ [ f ] (z)+osc(f ,  Beo(Z))] dz, 

which becomes, after changing the order of integration, 

f IT-1B~(OTud(Y) IBo-~)~o(z)(Y) f 

Finally, since the measure of a ball depends only on its radius, we can replace 

the second integral by 

m(T~-IB~(OTUi) N B0_~)~o (z)) 

m(B(,_~)~o(Z)) 
and by definition of G(~, e0) we get 

, s 
(1 + c~~ ~ Z R}~) (~ )  e~ _< G(e, eo) 

i 
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This gives, by definition of If[~, 

To conclude, it is sufficient to put together estimates (9) and (11): 

~ osc(Pf ,  BE(x))dx <(1 + c(ss) ~) [s~a ~ + 2G(:, :0)a~] Ifl~ 
N 

+ 2(1 + c(sa)~)G(:,:o)] .LNIfldm [c(s:) + 

where the constant 7/and D are given by 

r /=  (1 + cs~r ( s  ~ + 2 sup G(:, :__o):~'~ (1 C8 a C (~ )TI( ~O ) + 

and 

D = cs ~ + 2(1 + cs~E~) sup G(E)e -~ = cs ~ + (1 + cs"e~)~(eo)eo ~ < ~ .  
~<~o 

The Lemma is proven by definition of I " [a, provided that the constant e0 is so 

small that ~ < 1, which can be achieved because lira sUPeo_ m ~(:0) < 1 by (PEh). 
| 

5. S p e c t r a l  r e su l t s  

In this section we will present the main result, which is the spectral decomposition 

of PF for piecewise expanding maps satisfying our hypotheses. This theorem 

follows from Lemma 4.1 and an ergodic theorem of Ionescu-Tulcea and Marinescu 

(see JIM]). Its statement, adapted here for our special case, is borrowed from [Ke]. 

THEOREM 5.1 : Under assumptions (PE1)-(PEh) we have: 

(i) P: L:,~ -4 L:~ has a ~nite number ofeigenvalues A1,. . . ,  A~ of modulus one. 

(ii) The eigenspaces Ei := { f  C LimlPf = Ai f )  are included in V~ and ~nite 

dimensional t:or i = 1 , . . . ,  r. 
(iii) P = ~-~=1 AiPi + Q, where Pi are projections onto the eigenspaces Ei, 

IIPilll <_ 1, and Q is a linear operator on L~  with Q(V~) c V~, 

suPneN IIQ~II1 < oo, and IIQnll~ =- O(q '~) for some 0 < q < 1. Fbrther- 

more, PiPj = 0 if i ~ j and PiQ = QPi = 0 for all i. This means that P is 

quasi-compact as an operator on (V~, ]]. Ha). 
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(iv) 1 is an eigenvalue of P, and assuming ) l  1 = I and h. = Pll,  # = h .m is 

the greatest ACIM for T, i.e. if fz is T-invariant and fz << m then fz << #. 

(v) The support of fz can be decomposed into a finite number of disjoint 

measurable sets Wj,t for j = 1, . . . ,dim(El)  and l = 1, . . . ,Lj such that 

T(Wj j )  = Wj,l+lmod L~ and T L~ is mixing on each Wj,t. 

Proof: Since {f E V~ I supp f C fl, Ilfll~ <- 1} is compact in L~  by Proposi- 

tion 3.3, Ionescu-Tulcea and Marinescu Theorem and Lemma 4.1 give the usual 

spectral decomposition of P.  | 

THEOREM 5.2: Let T be a map which satisfies (PE1)-(PE5). The ergodic 

decomposition of any ACIM is finite, and the number E(T) of ergodic ACIMs 

is bounded by 

E(T) < m(~) ( D "~ N/~ 
- ' 

where the constant ~? and D are given by Lemma 4.1. 

Proof: Theorem 5.1 shows that  the ergodic decomposition of the maximal ACIM 

is finite. Hence each ergodic element of the decomposition is again an ACIM. But 

for all ACIM8, there exists a positive eigenfunction h associated to the eigenvalue 

1 on L~.  

From Theorem 5.1.(ii) we know that h E Va, so Lemma 4.1 yields IPhla < 

~lhl~ + D. Hence 
D 

Ihl  < - 1 - ~  

By Lemma 3.1 the infimum of h on some ball of radius 

1 

is strictly positive. One can also check that e < e0. 

It follows immediately that the number of ergodic ACIMS is limited by the 

maximal number 'of balls of radius e contained in ~, which is roughly* bounded 

by m(fl)/"/Ng N. | 

* Actually, if we do not put any restrictions on f~, this bound is optimal. 
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PROPOSITION 5.1: Let T be a map which satisfies (PE1) (PE5). The interior 

of the support of any ACIM /~ is of full y-measure, hence two ergodic ACIMs are 

different if and only if their supports have disjoint interior. 

Proof: We will prove something stronger, that  for almost all points in the 

support  of an ACIM # there exists a ball on which the density is bounded from 

below. 

Let us consider the sets N~ = {x E ~iEinfB~(~)h = 0} where 0 < s < So. 

Since the density h E V~, 

J U  J U  e 

This proves that  ~(N~) -~ 0 when ~ --> 0. Hence N -- NN~ is a null set; 

consequently for almost all points x E ~, there exists a ball on which the infimum 

of h is strictly positive. Such points are clearly in the support  of p. I 

6. D e c a y  of  c o r r e l a t i o n s  

Up to now we have only dealt with theoretical results about expanding maps. We 

would like then to give a concrete estimate on the rate of decay of correlations. 

The spectral gap ensures that  this rate is exponential for V~ observables, and 

in particular for ~-Hhlder ones. But the Ionescu-Tulcea and Marinescu theorem 

does not give any estimate about the rate of decay. We will use for that  the 

cone technique introduced by P. Ferrero, B. Schmitt and C. Liverani, which is 

becoming an important  tool to investigate such questions. We will explicitly 

compute a bound for the rate of decay of correlations in terms of the constants 

and D of Lemma 4.1 and some speed of mixing of any finite parti t ion of 

sufficiently small diameter. To be more precise, let us fix the setting: 

We suppose that  the map T satisfies (PE1)-(PEh) and we denote by # the 

mixing* ACIM. 

STEP 1: We first fix two parameters  0 < 5 < 1 and 0 < a < 1; the choice is 

arbi t rary or may be dictated by some properties of the map. We then define the 

following constants: 

D 
(12) B - 

t - 7 '  

* If # is not mixing, one can always consider the restriction of # to a subset of 
and some mixing iterate of T, given by Theorem 5.1. 
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log �89 
(13) Ko - , 

log 7/ 

B + 2  
(14) a = 

a 5  ' 
1 

(15) = \ 27 u 

(16) w(5) = ( 1 - 5 )  2 . 

DeIinition 6.1: We say that a finite partition .4 is mixed with an accuracy w > 0 

by K iterations of the map T if for all (A, A') E A 2 we have 

m(A' fq T-KA)  < 1 + w. 
1 - w  <_ m(A')#(A) - 

Remark 6.1: We remark that once the spectral gap is proved on V(~ for the 

transfer operator, it implies immediately that for any real w > 0 there exists 

K such that the partition .4 is mixed with an accuracy w after K iterations, 

provided that each element of the partition .4 has a characteristic function in Vs. 

S T E P  2: Let us choose now a partition .4 of diameter less than E, and find a 

K = K(.4, 5) > Ko such that the partition A is mixed with an accuracy w(5) by 

the map T g. 

Remark 6.2: The number of iterates for which the partition will be mixed with 

the proper accuracy may also be estimated by computer experiments, if the 

measure # is (sufficiently) known. 

THEOREM 6.1:  The rate of decay of the correlation is exponential on V~, and 
the following constructive estimate holds: 

Y f e L  1, # ( f ) = O  and VhEV~,  

C = 2(I(AKTNeN) 2 +  B)(2 + 3a)A .(1 + a - l +  1/ infAeA#(A))  m a x ( l ' s ~ a ) ' l - - a  . 

1 1 + a _ log 5 A = tanh l O g l _ a  

Let us introduce the normalized Perron-Probenius operator .P, defined on L~ 

by P I  = P( fh . ) /h . ,  where h. = d#/dm. Let us recall that P = T~, hence 

P I =  I. 

a f o Tnhd#] < CllflIL 111hll~A n, 

where C < oo and A < 1 are given by: 
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THEOREM 6.2: T'nh converges exponentially fast towards #(h) l  for h E Vs. The 

speed is at least 

II[jhn(h) - #(h)]h, II s <_ C'lihlisA n, 

where C' < ~ is given by 

C' = 2 ( 1 +  B)(2 + 3a)~--~ 1 + 
a -1 + 1/infAeA p(A) ~ max(l,  

] - -_ ;  J 7N o N 

Proof  of Theorem 6.1: 

f f o hdlz T n 

by inequality (6). With 

For P -- T~ and #( f )  -- 0 we have 

f 
= ] f ( f f ) nh  - #(h))dtt 

<_ [ I f l l L ~ , L l p n h  - #(h)l lL ~ 

max(l ,  s~) --n 
< ]lftLL  li[P h- , (h) ]h ,  Lis 

C - max(l ,  ~ )  C' 
")'NC0 N 

Theorem 6.2 gives the conclusion. U 

The idea of the proof of Theorem 6.2 is to link the speed of mixing of smooth 

(Vs) observables to that of the finite partition ,A. 

We will establish some preparatory lemmas which show step by step that PF 

is a contraction for a suitable metric (Hilbert-Birkhoff projective metric on a 

convex cone) defined on Vs. 

The flexibility of this method, shown to us by C. Liverani, relies on the fact that  

the partit ion can be chosen arbitrarily. In particular, it does not have to be any 

dynamical partition. Moreover, we can consider cones of not necessarily positive 

functions, and this allow us to forget the "covering hypothesis". Especially in 

higher dimensions, this assumption is usually difficult to prove, and probably not 

satisfied in many interesting cases. 

Before entering into the proof, let us see some preliminary definitions and 

properties of this metric. For a more detailed review of these properties, see for 

example [LSV1]. 

De[inition 6.2: We define a partial order relation on a convex cone C by 

f -< h c:> h -  f E C. 



242 B. SAUSSOL Isr. J. Math. 

The distance O(f,  h) between two points f ,  h E C is given by 

a ( f , h )  = sup{A > OlAf _~ h}, 

t3(f,h) = inf{# > Olh_~ #f} ,  

/~(f,h) 
O(f,  h) = log a ( f ,  h-----)' 

where we take a = 0 or fl = oc when the corresponding sets are empty. 

The distance O is a pseudo-metric because two elements can be at an infinite 

distance from each other, and it is a projective metric because any two propor- 

tional elements have a null distance. 

The next theorem, due to G. Birkhoff [Bi], shows that every positive linear 

operator is a contraction, provided that the diameter of the image is finite. 

THEOREM 6.3: Let V be a vector space, C C V a convex cone* and L: V --~ P 

a positive linear operator (which means L(C) C C). Let 0 be the Hilbert metric 

associated to the cone C. If we denote 

then 

A =  sup O(f ,h ) ,  
I,hEL(C) 

O(Lf ,  L h ) < t a n h ( ~ ) O ( f , h )  Vf, h E C  

(tanh(cc) = 1). 

We denote by E , ( f I A  ) the conditional expectation of a L~ function f with 

respect to the partition A. Let us define the cone of functions 

Ca(A) = {0 # f E L~(f~,I~) I Ifh,[~ __ aE, ( I IA)} .  

We will show that C~(A) is left invariant by the normalized operator P. 

LEMMA 6.1: 

Vf  E Ca(A) 5#(f)  < E~(~BKII A) _~ ~#( f ) .  

Proof." For all x E ~, denote by A = A(x) the element of A which contains x. 

For all f E Ca(A), 

E"( f iK f[A)(x)  - , ( d ( x ) )  (~) 

* To be completely honest, (7 cannot be any convex cone, weak properties have 
to be satisfied: (i) C n -C -- 0, (ii) VA > 0, )~C -- C, (iii) C is convex and (iv) 
V f , h E C, Vt,~ E • such that tn -+ t, h - t~f E C imply h - t f E C U {0}. 
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_ 1 fT fd# ,(A(x)) -KA(x) 

l fA f d#. 

But  m-a lmos t  everywhere  on A' N T-~:A we have 

fh ,  > m(A') , f d # - o s c ( f h , , A ' )  

>- .~(a') , fd . -  osc(fh.,B~(y))dy. 

Now an integrat ion over A' N T - K A  with respect  to m leads to 

m(A' n T -K  A) 
E"(P/~flA)(x) >-- ~ m(A')p(A(x)) 

A'CA 

_> (1 - w((~))p(f) - (1 + w(5))lfh.l.e ~ 

_> (1 - w(5) - ( 1 +  w(5))aeC~)p(f). 

Thanks  to our choice of a and e, one can check tha t  

1 - w((~) - (1 + w(5))ae ~' > 5, 

which proves the first inequality. 

The  second one is obta ined  in a similar way, because 

E . (PKfI .A . ) (x )  <_ (1 + w(~5)) ( # ( f )  + Ifh.l~e ~) 

_< (1 + w(5))(1 + aea)#(f). 

L e m m a  6.1 follows by checking tha t  (1 + w(6))(1 + a~ ~) <_ 1/5. | 

LEMMA 6.2: The  cone is mapped strictly inside itself by the operator ~K : 

PKCa(A)  C C~o(A). 

Proof: For f E Ca(A), let us show tha t  ~K f C Ca(A), i.e. 

IPK(fh,)l~ < aE,(DK flA). 

The  posi t iveness of E~ (flA) implies tha t  

(17) #([f l )  < i t ( f )  + [fh*l,~ e'~. 

243 
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By Lemma 4.1 (applied K times) we get 

IPK(fh.) l~ <_ ~TKIfh, l,~ + B/z(Ifl) 

< zIKIfh, r,~ + B[[fh, l , :  '~ -t-#(f)] 
< [a(7/K + B e  ~) + 1] #(f) .  

Moreover, Lemma 6.1 gives the lower bound 

Combining the two estimates, ~ K f  will belong to the cone C ~ ( A )  provided 

1 
~ :  + Be  ~ + - <_ aS, 

a 

which is true because z/K < T/K~ = a5/2  and Be  ~ + 1/a  <_ a5/2.  It 

We need then to show that the hyperbolic diameter of the image of the cone 

is finite, which will give the contraction in the Hilbert metric. 

LEMMA 6.3: The  distance between two elements  f ,  g E C~(A) in the cone Ca (A) 

is bounded by 

O , f , g , < 2 1 o g l +  a , (  ) + ll~.(glA)ll E.(fIA) 
- l~ E (.IA) 

Proof." The distance between f and g is given by the supremum of r and the 

infimum on s such that r f ~ g ~_ s f :  

I(g - r f )h . l~  ~ fgh.l~ + rl fh. l~ ~ aaE,(g]A) + raaE, ( f lA) .  

It follows that  g - r f  will belong to the cone if 

~aE,(glA) § raaE.(fl.A) ~ a]E.(g - rflA), 

that is to say 

r(1 + ~)E.(fIA ) ~ (1 - ~)E.(gIA). 

Hence the biggest r will be 

1 -____~a Einf E~ (glA) 
1 + a E~ (flA)" 

The same computation gives s. II 
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LEMMA 6.4: The diameter of pKCa(A) in Ca(A ) is finite, bounded by 

A = 2log 1 + ~ + 41og5_ 1 < oo. 
1 - ( 7  

Proof: Let f ,  g C Ca(A). Lemma 6.1 applied to f and g yields 

5#(f) < E~(PKIIA) < ~#(f) 

} , (g )  - E,( K IA ) - 5 , ( ,q )  

Moreover, L e m m a  6.2 ensures tha t  ~,Kf and ~)Kg belong to C~a(A). Hence we 

can apply Lemma 6.3, which gives the desired result. | 

LEMMA 6.5: The convergence of ~Knf  for f C Ca(A) towards I is exponential 
in the Hilbert metric of the cone Ca(A), the rate being at least A gn, where 

A = t a n h ( ~ )  U ~  < 1: 

A . Kn 
Vf G Ca(A), •n > 0 Oa(pKnI, I) ~ -A-~A . 

Proof: Let us recall tha t  /51 = I and I G Ca(A). We know tha t  the diameter  

of the image of the cone is finite, h e n c e / ~ g  is a strict contract ion by Birkhoff 's  

theorem 6.3, and the rate of contract ion is at least A K :=  tanh(~-) < 1; 

Oa(Pgnf,  I) = Oa(pKnf, pKnl) 

< Oa(( K) -IFKf, (FK) -IFKI) 
~_ AK(n-1)Oa(pK f, pK I ). 

Now the conclusion follows if we remark that  both  ~ K f  and P g l  are at a 

distance smaller than A by Lemma 6.4. | 

Proof of Theorem 6.2: Let f E Ca(A) and suppose for simplicity tha t  I t ( f )  = 1. 

For all r, s such tha t  r I  -~ f -~ s l  we have the following bound for the L 1 norm: 

m (IPKnfh,  - h, 0 <_ m ( I P K ' f h , - r h ,  0 + ( 1 - r ) .  

Since ~Knf  _ r E Ca(A) inequality (17) implies tha t  

m ( IPK ' Ih ,  - rh, I) <_ ]pK' Ih ,  - rh, l,E" + m ( p K ' f h ,  - rh,) + (1 - r) 

<_ ]PK~fh, - rh,[~e ~ + 2(1 - r). 

Moreover, the oscillation is bounded by 

[fignfh, - h,]~ <_ [Pg~fh,  - rh , [~  + ( 1 -  r)[h,l~ 

<_ [ P g ~ f h ,  -- rh ,  l~ + a ( 1  - r ) .  
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These two estimates give us, s i n c e  ~gnf _ r E C a ( A ) ,  

II(pKnf  -- 1)h, ila _< 2aF~p(pKnf - r lA ) -t- (2 d- a)(1 - r) 

< (2 +3a)(1  - r). 

Since 1 - r _< - log r <_ log(s/r), by definition of Oa we find 

IIbhKnf - 1)h, lq~ _< (2 + 3a)Oa(P Kn, 1). 

By Lemma 6.5, we know then that for each function f in Ca(A) we have 

A Kn (18) 11(~hKnf - ~ ( f ) )h ,  ll~ _< (2 + 3a)p(f )~-~A . 

In order to get the convergence of any function h E V~, it is enough to remark 

that fh := Ch + h will belong to the cone for some constant Ch sufficiently large. 

The condition for that is 

I(h + ch)h,l~ < aE, (h  + chiA), 

which is implied by the following inequality: 

(19) Ihh, I~ + Chih, la (_ a (c h -IIhHL~/ AEAinf #(A) )  . 

Since h, E C~a(A) we have Ih, l~ _< ha, hence inequality (19) will be true with 

Ch chosen as Ch = Colihh,]]~ for Co defined by 

a -1 + 1/infAeA #(A) 
Co= 1 - a  

Then inequality (18) provides the estimate 

] l (pKnh -- #(h))h,]]~ = ]](Pgnfh -- #(fh))h,]]~ 

A Kn 
< ( 2 + 3 a ) # ( f h ) - ~ A  

_< ( 2 + 3 a ) ~ g ( 1  +C0)]lhh, ll~. 

From Lemma 4.1 it is easy to deduce that for any integer p, 

IiPP(g)h,]]~ _< (1 + B)iigh, ll~, 

so finally, writing n = m K  + p with m integer and 0 _< p < K, we get 

II(P~(h) - #(h))h,  II~ _< (1 + B ) i l ( P g m ( h )  -- #(h))h,  lI~ 

<_ (1 + B)(2 A + 3a) ~-ffg (1 + Co)A~llhh, lla 

<_ C'Anllhll~. 
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Here we used inequality (7) in Proposition 3.4, and the constant C ~ is defined by 

A 2 max(l ,  ~ )  
C' = (1 + B)(2 + 3a) A--5-K (1 + C0) 7NeN | 

ACKNOWLEDGEMENT: I would like to thank S. Vaienti, C. Liverani and 

G. Keller for encouragement and many interesting discussions about this topic. I 

am particularly grateful to C. Liverani for communicating to me his notes about 

"no sup cones" which greatly improve the field of applications of the theorem on 

the rate of decay of correlations. I also want to acknowledge the hospitality of 

the University of Rome Tor Vergata and of the Institute for Advanced Studies, 

Jerusalem where this work was initiated. 

References 

[Bi] G. Birkhoff, Lattice Theory, 25, 3rd ed., American Mathematical Society 
Colloquium Publications, Providence, Rhode Island, 1967. 

[B1] M. Blank, Stochastic properties of deterministic dynamical systems, Soviet 
Scientific Reviews, Section C: Mathematical Physics Reviews 6 (1987), 243 
271. 

[BG] A. Boyarsky and P. Gdra, Absolutely continuous invariant measures for piece- 
wise expanding C 2 transformations in R n, Israel Journal of Mathematics 67 
(1987), 272-286. 

[BGP] H. Proppe, P. G6ra and A. Boyarsky, Inadequacy of the bounded variation tech- 
nique in the ergodic theory of higher-dimensional transformations, 
Nonlinearity 3 (1990), 1081 1087. 

[Bu] J. Buzzi, Intrinsic ergodicity of atone maps in [0, 1] d, Monatshefte fiir 
Mathematik 124 (1997), 97-118. 

[Bu2] J. Buzzi, Acims for arbitrary expanding piecewise real-analytic mappings of 
the plane, to appear in Ergodic Theory and Dynamical Systems. 

[IM] C . T .  Ionescu-Tulcea and G. Marinescu, Thdorie ergodique pour des classes 
d'opdrations non complbtement continues, Annals of Mathematics 52 (1950), 
140-147. 

[Ke] G. Keller, Generalized bounded variation and applications to piecewise 

monotonic transformations, Zeitschrift fiir Wahrscheinlichkeitstheorie und 
Verwandte Gebiete 69 (1985), 461-478. 

[LY] A. Lasota and J. A. Yorke, On the existence of invariant measures for piece- 
wise monotonic transformations, Transactions of the American Mathematical 
Society 186 (1973), 481-488. 



248 B. SAUSSOL Isr. J. Math. 

[L1] 
[L2] 

[LSV1] 

[Vu] 

[z~] 

C. Liverani, Decay of  correlations, Annals of Mathematics 142 (1993), 1 63. 

C. Liverani, Decay of correlations for piecewise expanding maps, Journal of 
Statistical Physics 78 (1995), 1111 1129. 

C. Liverani, B. Saussol and S. Vaienti, Conformal measure and decay of  

correlations for covering weighted systems, Ergodic Theory and Dynamical 
Systems 18 (1998), 1399-1420. 

M. Yuri, Decay of correlations for certain multi-dimensional maps, Nonlinearity 

9 (1996), 1439-1461. 

K. Adl-Zarabi, Absolutely continuous invariant measures for piecewise 

expanding C 2 transformations in W ~ on domains with cusps on the bound- 

aries, Ergodic Theory and Dynamical Systems 16 (1996), 1 18. 


